Tender Energy X-ray Spectroscopy (TES):

A beamline for high performance spatially resolved X-ray absorption spectroscopy and imaging at mm to micron scales, optimized for the "tender" energy range from 1 up to 8 keV

Paul Northrup
BDP Spokesperson

Interim Group Leader, TES Beamline
Stony Brook University and BNL Photon Sciences

Rock & Cell Workshop

September 17, 2012

Overview of TES capabilities:

- Energy range 1-8 keV
 - Optimized for *Tender* 1-5 keV range
- Spot size user-tunable from 1 mm to 1 μm
- Microbeam flux up to 2x10¹² ph/sec at sample
- Microprobe: extend XRF imaging and XAS capabilities to lighter elements
- Optimized for high-performance XAFS at all available spot sizes
- Helium glove-box sample environment
- On-the-fly scanning of either stage or monochromator

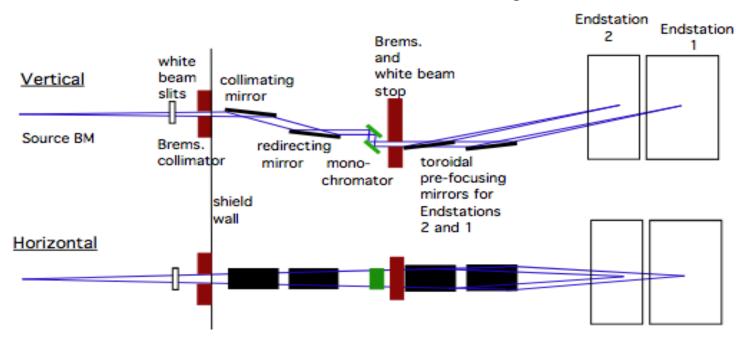
Tender energy range:

- Access K edges of lighter elements...
 - Mg, Al, Si, P, S, Cl, Ca, Ti
- ...and uniquely advantageous L and M edges
 - Cd, Sb, Zr, W, Mo, Th, U, Pu
 - Sensitivity to oxidation state and coordination
- Requires specialized design of entire beamline
 - Optics, monochromator crystals, windows
- Helium-atmosphere sample environment
 - Wet or vacuum-sensitive samples in their native states
- Specialized fluorescence detectors
 - Low-energy sensitivity, compatibility with He atmosphere

XRF imaging

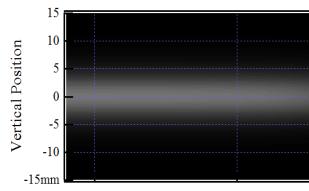
Why you need a low-energy incident beam even for XRF:

Light elements have low cross-section at high energy

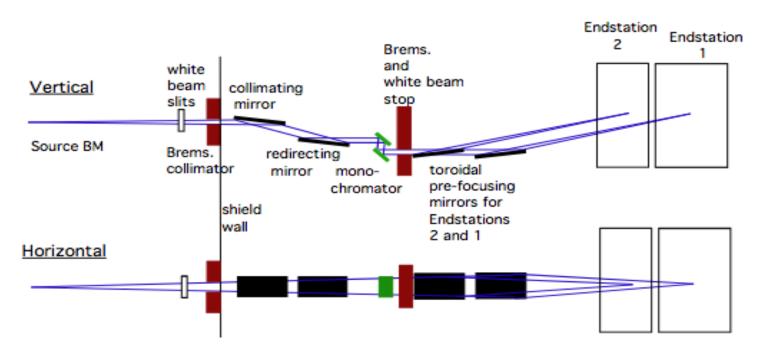

Measurable	Incident energy	Na	Mg	Al	Si	P	Fe
fluorescence counts	at abs. edge	1000	1000	1000	1000	1000	1000
produced by a	at 2 keV	214	378	575	822		
hypothetical sample	at 3 keV	71	124	200	308	455	
as a function of	at 5 keV	16	30	50	76	159	
incident beam energy.	at 10 keV	2	4	7	11	15	427

 To see low-concentration light elements that would be masked by fluorescence from slightly heavier elements at high concentration

Spatially-resolved XAFS:

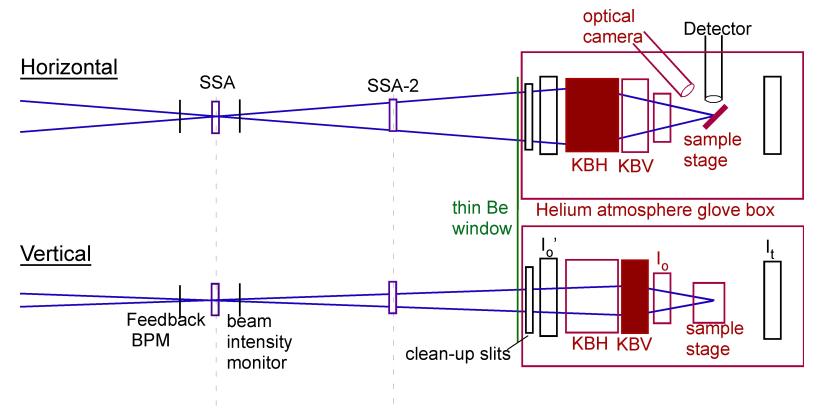

- XANES to full-length EXAFS scans at microbeam resolution
 - Heterogeneous or structured materials
 - Tune beam size to experimental needs
 - Measurements of single particles
- Requires optimization of beamline design for XAS
 - Stable energy scanning and repeatability (within 0.1eV)
 - Stable beam position over 1000eV span (35° of mono)
 - High flux and detector sensitivity for low concentrations
- XAS imaging in two modes:
 - Image stack at increments of energy
 - Energy scan at each pixel (fast scanning of mono)

TES Beamline layout:



 Source: NSLS-II dipole bend magnet is ideal for TES

 Ec=2.39 keV, smooth broadband spectrum over energy range, small source size for focusing, no spatial or energy-dependent structure, high brightness.



TES Beamline layout:

- Collimating/harmonic-rejection mirror, paired with redirecting mirror, adjustable pitch 6-26 mrad
- Fixed-exit monochromator, Si(111), InSb, Beryl...
- Macro-focusing toroidal mirrors
- Two endstations: microprobe and bulk/in-situ

Microprobe endstation:

- Secondary source aperture at macro focus
- KB mirrors in sample chamber (He glove box)
- Spot size tunable by adjusting SSA (H and V independent)

Microprobe endstation:

- Operation as a He-atmosphere glove box
- Sample stage similar to hard X-ray microprobes
 - Standard 45° geometry
 - Accommodate large samples or in-situ cells
- Detectors for low and high count rates
 - Ultra-low-energy Ge detector, Vortex Si detector
 - Either detector can extend to within a few mm of sample
- Optical camera facing sample

Performance:

 Ray tracing and flux calculations give the following estimates delivered to sample:

	Endstation 1	Endstation 2				
Energy (keV)	Flux, tunable from 0.2x0.2 to	Flux, microbeam	Flux, microbeam	Flux, microbeam		
	1.2x0.5 mm (ph/s at sample)	19x23 microns	6x7 microns	1x1 micron		
1.2	1.15×10^{12}	5.4×10^{11}	2.85×10^{11}	6.8×10^9		
2	3.5×10^{12}	2.3×10^{12}	$1.0 \text{ x} 10^{12}$	2.4×10^{10}		
3	2.8×10^{12}	1.9×10^{12}	7.7×10^{11}	1.8×10^{10}		
4	1.9×10^{12}	1.2×10^{12}	4.5×10^{11}	1.1×10^{10}		
5	1.3×10^{12}	7.2×10^{11}	2.7×10^{11}	6.4×10^9		
7.5	5.1×10^{11}	2.15×10^{11}	8.1×10^{10}	1.9×10^9		

- Initial performance will be reduced in order to achieve earliest availability and minimize downtime
- Beamline macro-focusing optics will be moved from NSLS X15B and subsequently upgraded to full performance

Beamline development timeline:

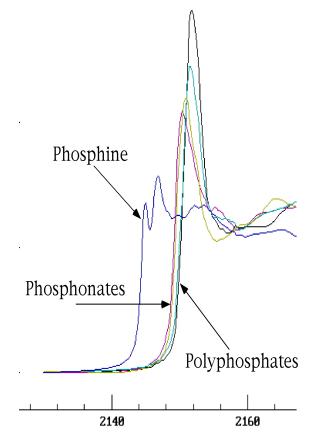
- June/July 2010 Beamline Development Proposal (BDP) submitted, presented to Science Advisory Committee review panel
- October 2010 Beamline formally approved by NSLS-II
- May 2012 NxtGen Project announced, including TES
- August 2012 X15B/TES microprobe endstation project funded
- October 2012 NxtGen Project formal start
- ~mid-2014 NSLS shutdown, NSLS-II startup, commissioning of SRX
- October 2014 commissioning of TES

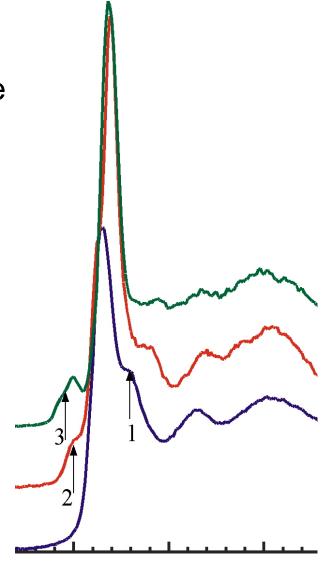

Microprobe endstation project:

- Microprobe endstation being built and commissioned at NSLS Beamline X15B now
- Jointly funded by NSF and DOE:BES through Stony Brook University
- Design mostly complete, KB mirrors and experimental chamber ordered
- Plan for commissioning February-April 2013
- Full operation available Summer 2013
- Move to TES mid-2014, commission October 2014

Tender XAS -- examples

Sulfur XANES:

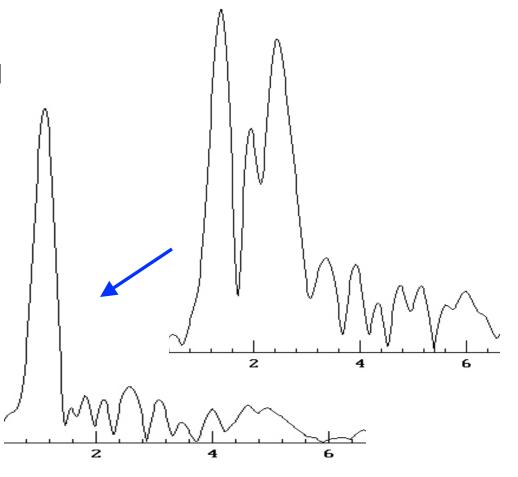

- Oxidation state, speciation
- Sulfide, thiol,
 disulfide, sulfoxide,
 sulfonate, sulfate
- Distinct peaks over10 eV



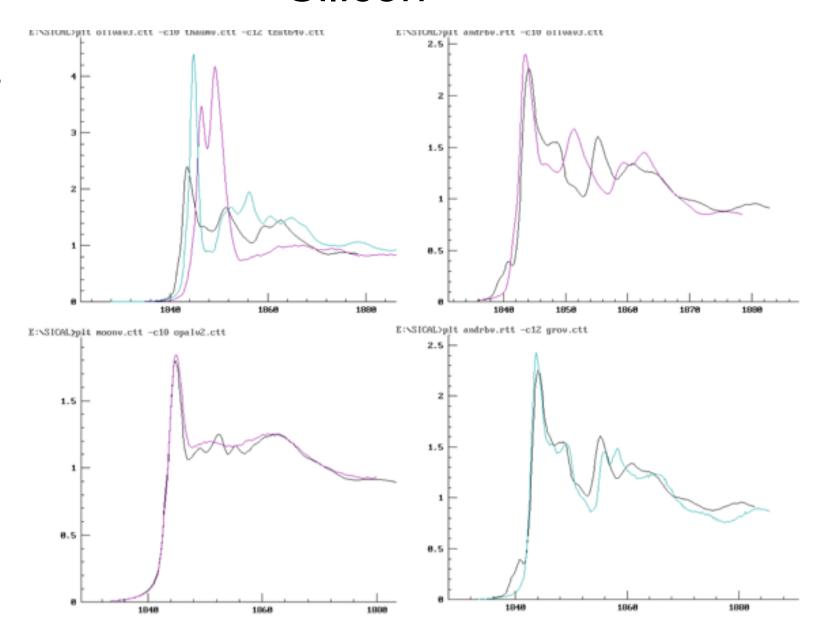
Phosphorus

XANES:

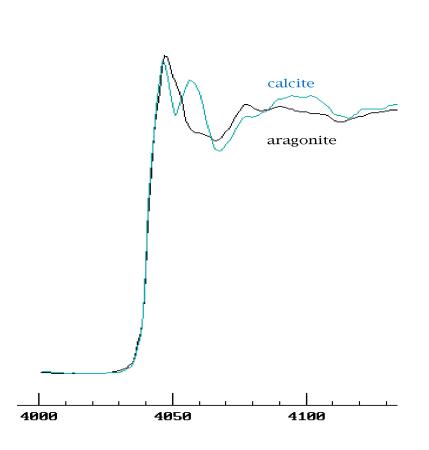
- Oxidation state
- Chemical coordination, Ca, U, Fe
- Library of mineral standards

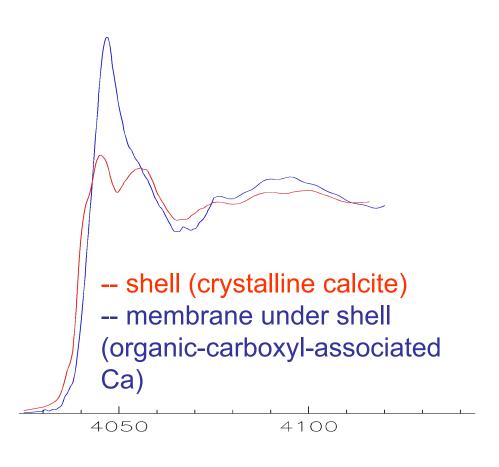


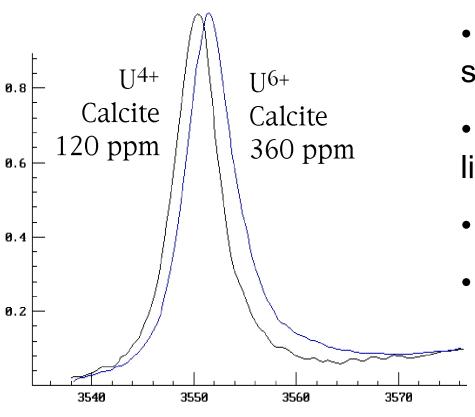
Phosphorus


EXAFS:

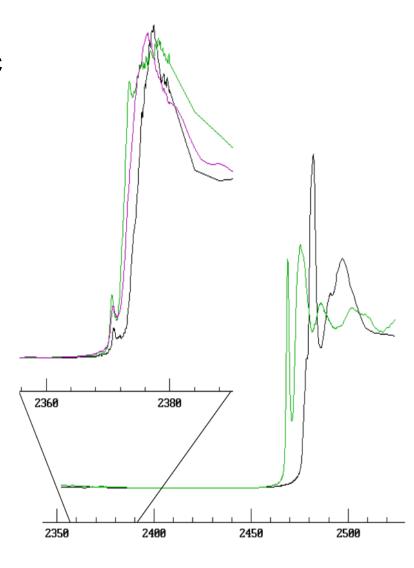
- Local structure (out to ~8Å)
- Example: conversion of organic phosphate ester to free phosphate by microbial phosphatase


Silicon


XANES


Biomineralization

- Identification of (nano)crystalline and amorphous phases
- The Egg


Uranium M₅ edge:

- Very sensitive to oxidation state
- No interferences from Rb, Sr like at the L₃ edge
- Below Ca K edge
- Sensitivity to ~1ppm

Dual-energy XAS at X15B/TES:

- Dual-energy beam studies, e.g. Fe and S:
 - Selectively allow some harmonic to pass monochromator
 - Requires that beam not be detuned
 - Scan both energies at once, measuring both fluorescence energies independently

